

Fill the carts in with the correct colors!
Gray for Garbaye
Brown for Food Scraps
Blue for Recycling
Green for Yard Trimmings

The Handy Kitchen Pail.

Use it to store your food scraps until you empty it into the food scraps side of your gray garbage/food scraps split cart. Do not place the pail at the curb for collection.

Follow the maze to put the donut in the kitchen pail!

What Belongs in the Food Scraps?

All Fresh, Frozen, Cooked \& Moldy Food Scraps, Including:

- peels, pits \& rinds.
- dairy products.
- bread \& pasta.
- coffee grounds \& tea leaves.
- meats \& bones.
- backyard fruit \& vegetables.

Food-Soiled Paper

- soiled napkins \& paper towels
- soiled newspaper \& kraft paper bags

Fork to Feed: The SAFE Process

DID YOU KNOW?

, $\mathbf{2 5 \%}$ of the food Americans buy is thrown away.

Word Scramble

Unscramble the letters to create terms mentioned in the diagram to the left. Use the letters in the circles to spell out the process described in the diagram.

PEARSEAT

ODOF CARPS

STURCK

LITCAFYI

ESCROU

DRUCTOPOIN

SOCERSPED

LAMINA EDEF

Retail value of preventable food waste = \$166 billion/year.
$\mathbf{2 5 \%}$ of U.S. fresh water goes to producing food we throw away.
American's pay $\$ 1.3$ billion a year to landfill food waste.
Organic waste produces 135 million tons of greenhouse gases/year.
4% of total U.S. oil consumption is used for food production.
Source: Natural Resources Defense Council

www.MilpitasSanitation.com

MATERIAL LIFE CYCLES
 ilpitas
 Sanitation

 Waste to Landfill

The trash is compacted to make room for more trash to be dumped until the landfill reaches its capacity.

WORD SEARCH

COMPACTION DUMP FINITE GARBAGE LANDFILL METHANE POLLUTION RECYCLE REDUCE RESOURCES

REUSE
TRASH
TRUCK
WASTE

DID YOU KNOW?

- The average American creates 4.38 lbs of garbage per day.
- 135 million tons of garbage went to American landfills in 2012.
- Landfills create 17.5% of all man-made methane gas. Methane contributes to global warming.
- Materials that are dumped at a landfill never enter the economic market again. This causes us to use more of Earth's precious finite resources and in so doing use more energy and create more pollution.
- We can take better care of the planet by learning to reduce, reuse, recycle and compost!

MATERIAL LIFE CYCLES Aluminum Manufacłuring

WORD SEARCH

ALUMINUM BAUXITE CANS ELECTROLYSIS

FACTORIES MANUFACTURING

MINE
RECYCLE
REDUCE
REUSE
SHEETS

DID YOU KNOW?

- Recycling aluminum uses only 5% of the energy required to create aluminum from bauxite.
- Water pollution is reduced 97% when using recycled aluminum instead of bauxite.

Milpitas
 S anitation

www.MilpitasSanitation.com

S S V N S X P L F I M N M K N MEHHOUK JW W U A E K O H T I ESMCTRVNTRJW H E K R E T G X S U I H F L V B B R C OTNAFXMEXMF V O W I W T S A U P U U R T R MTEWHHCADWLXMOE W J F L H T B A G I A T K U D E F B B U Q LA F S NAC I U N N Y R O Y M R E C Y C L E C

D X I S I S Y L O R T C E L E
I N A M N E R Y E J Y K U X I G P K J A I U U R Z F D B Y J D F J M O N S VKGLGNYO U V T G P E Z S F F T R W Y P

MATERIAL LIFE CYCLES

DID YOU KNOW?

- Recycling plastic uses only 12% of the energy required to make plastics from raw materials.
- Every pound of recycled PET plastic flakes used reduces greenhouse gas emissions by 71%, rather than using raw materials to make PET plastics.
www.MilpitasSanitation.com

I A C W D E Q S M R G S V J O
A D S O C X I X T Q E Y P M C
G D I U A T L R I E O U V X A
T L D T S R R O F C L E S V M
K E P I B U W G K D P L M E E
R M K J T S A D K L U C E N T
B A L E S I N W A U M Y T P U
T P B D O O V S O E K C G A B
G S W Z L N T E J T J E Q B S
Y Z E L Y I Q M S U J R K F U
H G I Y C G N I D L O M M S U
Z F G H M A I E X U B U S K D
A Z D T Y W P D Z V Y U A O F
T D CONTAINERSRZI
B H G N M Y Q T F X P L P P H

MATERIAL LIFE CYCLES Compost Manufacturing

WORD SEARCH

COMPOST
CONSERVE
CONTAMINANTS
CURING
DECOMPOSITION
EROSION
FOODSCRAPS
NITROGEN
ORGANIC
RECYCLE
REDUCE
REUSE
RUNOFF
SCREENING
SHRED
WINDROWS
YaRDWASTE

DID YOU KNOW?

- Compost conserves water by increasing water holding capacity of soil by 3-10\%.
- Compost stabilizes soil pH, and reduces soil erosion and runoff.
www.MilpitasSanitation.com

Z ONWCRDWOERPTTS
B Y N O U I I Z L D E N S L T
C C A N I N N C E S D I O W N
LU OR DTYAPMUTPDA
E F R R D C I A G M C R M Z N
FEOIEWRSAREOOLI
Y W S R N CAYOFOGCVM
SHRUSGFSSPFELHA
MHGDERHSTXMNSQT
I S O L Y R B U T E U O I T N
Q O S CREEN INGCCYO
FEVRESNOCRYYEEC
W Y O X A P P V M T Q S F V D
Y H H M N C I A JVTDXOM
EROSIONGYSUPLSK

MATERIAL LIFE CYCLES Paper Manufacturing

 People have three
 they are finished using paper

WORD

 SEARCHBALES
CRAFTS
ENERGY
LOGS
PAPER
PAPERMILLS
POLLUTION
RECYCLE
REDUCE
REUSE
ROT
TREES
COMPOST
WOODPULP

DID YOU KNOW?

When new products are made from recycled paper instead of virgin wood pulp:

- Energy use is reduced by 64%.
- Water use is reduced by 50%.
- Air pollution is reduced by $\mathbf{7 4 \%}$.
- 17 trees are saved.
- 5 times more jobs are created.

Milpitast Sanitation

www.MilpitasSanitation.com

S C D S T H V P F Z S P C C W
Q L O I Q F L Z I N T T V R K V X L M J U ETEOR WTAC U G K I P S J N S I W K K F R K K B D M O E W X T S O W T E
U R O I ERSECUDERSP
Y O U S G U E T D L J K L U A
W T U Y Y Z W P W L Q B D A P
RECYC LE Q A O X U P N B R L S G T O H W H P H G U H B Y A O U I F G L N C G T Y D M C W S G Z K D Q E V U E Q W Z Y F M J S Q F S G I F M P Q R M U Q E P W L O T R E E S F C
UTEN U J UXHYXD D D Q

Recycling
 Conserves

 Water!Making paper from recycled fibers uses 49% less water than making paper from virgin fibers.

Recycling one ton of paper saves 7,000 gallons of water.

Recycling one ton of glass requires 50% leSS water (12,000 gallons) than making glass from raw materials.

Recycling aluminum creates 97% less water pollution than making new metal from ore.
Recycling steel Saves 40\% of water used to make steel from ore.

It takes 3-gallons of water to produce 1-gallon of bottled water.

Word Scramble

Unscramble the letters to create terms used in the bullet list to the left. Use the letters in the circles to spell out what you can do by recycling.

LYCINRECG
IVRING BRIEFS
$\overline{\operatorname{SLAG}} \bar{O} \overline{\mathrm{~N}} \ominus-$

MUMLINUA

www.MilpitasSanitation.com

MATERIAL LIFE CYCLES

 Glass Manufacturing

DID YOU KNOW?

- Every ton of glass recycled saves over a ton of natural resources.
- For every 10% of recycled glass used to make new glass, the energy cost drops 2-3\%.
www.MilpitasSanitation.com

E D N J Z V S H K Z S K E L B
J N G Y U E S H C R EA G Z B
AVOLXABOQVIXZFF
R M H T A T L M E X R E U S E
$S Z T D S O Q U Q E O P Q S D$
L R O D R E S Y Q H T K G D B
I S K S F P M A R E C Y C L E
Q S L L L Y B I N R A B O O A
U T E L L U C O L D F Q S M X
I E G L C L A I T C U S G D O
D C C F O P G I W TAVKTG
$Z H B U M Y O B L L E R E F$
UK W K D D X G G C Q E V L S
M S V R M E C O CVRIS H T
Q O V X D J R R Q H I U O C E

ALUMINUM LIFE CYCLE WORD SEARCH SOLUTION

```
S S + + + + + + + + M + M + +
+ E H + + + + + + + U A E + +
++NE + + + + + + N T + + +
+++REE+++++US + + + +
++++OT T + FXM + + + +
+++++ TSSASU+U + + + R
+ + + + + + CA + + L + + + E
++++++TBA + + A + + + D
E + + + U + + + FSNNA C + U
+N+R+++RESYCLES
+ + S IS Y L OR T C E L E
+N+N++++EE+++++++
G + + + + + + U + + + + + + +
+++++++S + + + + + + + +
+++++E + + + + + + + + +
```

(Over,Down, Direction) ALUMINUM $(11,8, \mathrm{~N})$ BAUXITE $(7,8, \mathrm{NE})$ CANS (13,9,W)
ELECTROLYSIS ($15,11, \mathrm{~W})$
FACTORIES ($9,9, \mathrm{NW}$)
MANUFACTURING(13,1,SW) $\operatorname{MINE}(4,12, N W)$ $\operatorname{RECYCLE}(8,10, \mathrm{E})$ REDUCE $(15,6, S)$ $\operatorname{REUSE}(10,11, S W)$ $\operatorname{SHEETS}(2,1, \mathrm{SE})$

COMPOST LIFE CYCLE WORD SEARCH SOLUTION

$++\mathrm{N}+\mathrm{CR}+\mathrm{W}+\mathrm{ER}+\mathrm{T}+\mathrm{S}$ $+\mathrm{Y}+\mathrm{OUII}+\mathrm{L}+\mathrm{ENS}+\mathrm{T}$ C + AN INNC +S D I O +N + U ORDTYAP + UTP + A + FRRDCIAG + CRM +N FEOIEWRS + REOO + I + W SRNCA $+\mathrm{O}+\mathrm{OGC}+\mathrm{M}$ $S++U S G+S+P+E++A$ $+++\mathrm{DERHST}+\mathrm{MN}++\mathrm{T}$ $++\mathrm{O}++\mathrm{R}+++\mathrm{E}+\mathrm{O}++\mathrm{N}$ + OSCREENING+C+O FEVRESNOC ++++ E C $++++++++++++++D^{+}$ $+++++++++++++++$
EROSION ++++++++
(Over,Down, Direction)
COMPOST(13,7,N)
CONSERVE $(9,12, W)$
CONTAMINANTS $(15,12, \mathrm{~N})$ CURING (1,3,SE)
DECOMPOSITION(15,13,NW) $\operatorname{EROSION}(1,15, E)$
FOODSCRAPS (1,12, NE $)$ NITROGEN $(12,2, \mathrm{~S})$ ORGANIC (11,7, NW) RECYCLE ($4,7, \mathrm{NE}$) REDUCE $(11,1, \mathrm{~S})$ $\operatorname{REUSE}(6,10, \mathrm{NW})$ RUNOFF ($6,1, \mathrm{SW}$)
SCREENING $(3,11, E)$
$\operatorname{SHRED}(8,9, \mathrm{~W})$ WINDROWS $(8,1$, SW $)$ YARDWASTE (2,2,SE)

PLASTIC LIFE CYCLE WORD SEARCH SOLUTION

GARBAGE LIFE CYCLE WORD SEARCH SOLUTION
++++++ ECRAFTSSSV $+++++\mathrm{LN}++++\mathrm{G}+\mathrm{EP}$ $++++\mathrm{C}+\mathrm{E}+++\mathrm{O}+\mathrm{RLL}$ $+++\mathrm{Y}++\mathrm{R}++\mathrm{L}+\mathrm{M}+\mathrm{A} \mathrm{U}$ $++\mathrm{C}+++\mathrm{G}+++\mathrm{I}+\mathrm{PB} \mathrm{P}$ $\mathrm{NE}++++\mathrm{Y}++\mathrm{C}+\mathrm{A}++\mathrm{D}$ $\mathrm{RO}++++++\mathrm{O}+\mathrm{P}+++\mathrm{O}$ ++ I S L L I M R E P A P + O $+++\mathrm{T}++\mathrm{P}+\mathrm{RES}+++\mathrm{W}$ $++++\mathrm{UO}++++\mathrm{DU}+++$ ++++ S L SEERTUE + + $+++\mathrm{T}+\mathrm{L}_{+}++++\mathrm{CR}+$ $++\mathrm{I}++++\mathrm{O}+++++\mathrm{E}+$ $+\mathrm{N}++++++\mathrm{P}++++++$ $\mathrm{G}++++++++++++++$
(Over, Down,Direction)
$\operatorname{BALES}(14,5, \mathrm{~N})$
$\operatorname{CRAFTS}(8,1, \mathrm{E})$
$\operatorname{ENERGY}(7,1, \mathrm{~S})$
$\operatorname{LOGS}(10,4, \mathrm{NE})$
$\operatorname{PAPER}(13,5, \mathrm{SW})$
$\operatorname{PAPERMILLS}(13,8, \mathrm{~W})$
$\operatorname{POLLUTION}(9,14, \mathrm{NW})$
$\operatorname{RECYCLE}(1,7, \mathrm{NE})$
$\operatorname{REDUCE}(9,8, \mathrm{SE})$
$\operatorname{REUSE}(14,12, \mathrm{NW})$
$\operatorname{TREES}(11,11, \mathrm{~W})$
$\operatorname{VERMICOMPOSTING}(15,1, \mathrm{SW})$
$\operatorname{WOODPULP}(15,9, \mathrm{~N})$

(Over,Down,Direction) $\operatorname{ADDITIVES}(1,2, \mathrm{SE})$ BALES $(1,7, E)$
CONTAINERS $(3,14, E)$
EXTRUSION $(6,1, S)$
MOLDING $(12,11, W)$
OIL (4,2,SW)
PELLETS (14,7, NW)
PLASTIC(11,5,SW)
RECYCLE $(12,10, \mathrm{~N})$
$\operatorname{REDUCE}(1,6, \mathrm{NE})$
$\operatorname{REUSE}(10,1, \mathrm{SE})$
TUBS $(15,6, S)$

```
\(+\mathrm{E}++++++\mathrm{N}++\mathrm{E}+++\) \(++\mathrm{T}++\mathrm{E}+\mathrm{OO}++\mathrm{C}+++\) \(+++\mathrm{I}+\mathrm{I}+\mathrm{I}++\mathrm{U}+++\) \(\mathrm{T}++\mathrm{SNT}++\mathrm{T}++\mathrm{D}+++\) \(+R A+U I E L C Y C E R+G\) \(\mathrm{L} W \mathrm{~W} \mathrm{~L}++\mathrm{F}+\mathrm{A}++\mathrm{R}++\mathrm{A}\) \(+\mathrm{ALCD}+\mathrm{M}+\mathrm{P}+++++\mathrm{R}\) \(+O N \mathrm{NXE}++\mathrm{M}+++\mathrm{R}+\mathrm{B}\) \(P+M D T R E S O U R C E S A\) \(+\mathrm{P}+\mathrm{HF}+++\mathrm{C}+++\mathrm{U}+\mathrm{G}\) \(++\mathrm{A}++\mathrm{I}++++++\mathrm{S}+\mathrm{E}\) \(+\mathrm{N}++++\mathrm{L}+++++\mathrm{E}++\) \(\mathrm{E}+\mathrm{T}\) RASH \(\mathrm{L}++++++++\) \(+++++++++++++++\) \(+++++++++++++++\)
```

(Over,Down,Direction) COMPACTION $(9,10, N)$ $\operatorname{DUMP}(5,7, S W)$ FINITE (7,6,NW) GARBAGE $(15,5, S)$ $\operatorname{LANDFILL}(1,6, S E)$ METHANE $(7,7$, SW $)$ POLLUTION (1,9,NE) RECYCLE $(13,5, W)$ REDUCE ($12,6, \mathrm{~N}$) RESOURCES $(6,9, \mathrm{E})$ $\operatorname{REUSE}(13,8, \mathrm{~S})$ TRASH $(3,13, E)$ $\operatorname{TRUCK}(1,4, S E)$ $\operatorname{WASTE}(2,6, \mathrm{NE})$

FORK TO FEED
WORD SCRAMBLE SOLUTION

SEPARATE
(FOOD SCRAPS
T R U CKS
SAFE
FACILITY
AUGERS
SOU R CE
PRO(DUCTION
PROCESSED
ANIMAL FEED

FOㅇK IO F EEED

RECYCLING SAVES WATER WORD SCRAMBLE SOLUTION

$$
\begin{aligned}
& \text { PAPE }{ }^{R} \\
& \text { GL(A)S } \\
& \text { (R) } E \underline{C} \underline{Y}(\mathbb{C} \text { LING }
\end{aligned}
$$

$$
\begin{aligned}
& \text { GALLONS } \\
& \text { A L U } \underline{M} \underline{I} \mathbb{N} \underline{U} \underline{M}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ME(T) AL } \\
& \text { (S) I E E L } \\
& \text { B으ILED (WAI(E)R }
\end{aligned}
$$

DONUT MAZE SOLUTION

